

High quality, Prospective Registry Design: Statistical Recommendations, Issues and Answers for TREAT INDUSTRY PERSPECTIVE

Ruchira Glaser, MD, MSce, FACC GlaxoSmithKline

Potential benefits of well-designed study leading to class labeling of anticoagulation in transradial PCI

- Safety
- Use
- Costs Healthcare

What are key study design issues for observational data?

Confounding and Bias

- Variations in degree of use of anticoagulants due to preexisting patterns specific to US
- Variations in drug administration and monitoring (potentially affect bleeding and ischemic outcomes)
- Confounding by indication, both for drug and route PCI
- Variations in center/operator by procedural volume, radial experience, geographic region, population size

What are key study design issues for observational data?

Sample size

- Adequate to help adjust for above issues of confounding
- Adequate to represent less used anticoagulants in US
- Feasibility—barriers to industry participation
 - Risk of misinterpretation of data as superiority of one anticoagulant over another
 - Risks of supporting a study of off-label use of their drug
 - Can study design adequately support uniform class labeling of anticoagulants, including theirs, in transradial PCI
- Endpoints and definitions

What would be the best basis for specific drug bleeding evaluation?

Possible pitfalls--Power

- Low usage patterns in US of certain anticoagulants
 - ability to precisely evaluate safety of low use drugs (wide CI around estimate of bleed)
 - ability to adequately compare transfemoral and transradial PCI bleeding risks of low use drugs
- Interaction or effect modification between drug type, PCI route, and bleeding

Opportunities for imbedded studies or pre-specified data collections

enrich for subpopulations to improve power?

- specific subpopulations at higher risk for bleeding
- specific anticoagulants (?utility and/or feasibility)
- non-bleeding safety questions?
- use of platelet aggregation indices/devices, other novel markers of drug effect?

What are optimal comparators for bleeding safety and TRI?

Site limited

- bleeding creating vascular compromise
- access site bleeds
- Systemic

OPC: can we pool data from other studies to add information?

- Large scale observational registry (pre-existing data)
- Bleeding data in randomized controlled antithrombotic therapy trials which have some percentage of transradial PCI

Hemorrhagic endpoints and incidence in a stable to low risk ACS population

Table 4. Hemorrhagic End Points*

Variables	Heparin Plus Glycoprotein IIb/Illa	Bivalirudin	P Value
Major bleeding	123/3008 (4.1)	71/2993 (2.4)	<.001
Intracranial	2/3008 (0.1)	1/2993 (0)	>.99
Retroperitoneal	16/3008 (0.5)	7/2993 (0.2)	.06
Vascular access puncture	74/3008 (2.5)	25/2993 (0.8)	<.001
Gastrointestinal	18/3008 (0.6)	4/2993 (0.1)	.003
Genitourinary	6/3008 (0.2)	1/2993 (0)	.13
Related to cardiac surgery	18/3008 (0.6)	17/2993 (0.6)	.88
Minor bleeding	772/3008 (25.7)	400/2993 (13.4)	<.001
TIMI bleeding criteria† Major bleeding	26/3008 (0.9)	19/2993 (0.6)	.30
Minor bleeding	91/3008 (3.0)	39/2993 (1.3)	<.001
Any transfusion	76/3008 (2.5)	50/2993 (1.7)	.02
Transfusion ≥2 U	58/3008 (1.9)	39/2993 (1.3)	.06
Red blood cell	57/3008 (1.9)	43/2993 (1.4)	.17
Whole blood	4/3008 (0.1)	1/2993 (0)	.38
Platelets	18/3008 (0.6)	10/2993 (0.3)	.13
Thrombocytopenia Platelets <100 ×10 ³ /µL	50/2863 (1.7)	20/2868 (0.7)	<.001
Platelets <50 ×103/µL	19/2863 (0.7)	8/2868 (0.3)	.03

Abbreviation: TIMI, Thrombolysis in Myocardial Infarction trial.10

*Values are expressed as number/total (percentage). Denominators are corrected for missing values. †TIMI major and minor bleeding are mutually exclusive classifications.

Evolution of bleeding definitions

- TIMI major and minor bleed
- Bivalirudin studies change previous research accepted bleeding definitions
- Argue this is more updated and thus clinically relevant
- Increases statistical power (higher event rate) and difference between anticoagulants
- ACUITY definition major bleed used in new composite 'quadruple' endpoint
 - Major bleeding was defined as the cumulative occurrence within 25 to 35 days after randomization of intracranial or intraocular bleeding, hemorrhage at the access site requiring intervention, hematoma with a diameter of at least 5 cm, a reduction in hemoglobin levels of at least 4 g per deciliter without an overt bleeding source or at least 3 g per deciliter with such a source, reoperation for bleeding, or transfusion of a blood product.

Is time to hemostasis, or CABG related bleeding relevant?