Are Heart Rate Increases a Meaningful CV Safety Issue Associated with COPD Drugs?

Ihor Gussak, MD, PhD, FACC
Cardiology Consultant
Clinical Professor of Medicine, Rutgers University

Introduction and Background

- Many COPD drugs on market and in DD have an effect on HR
 - o SABAs, LABAs, LAMAs, ICS
 - o ICS+LABAs+LAMAs, LABAs+LAMAs, ICS+LABAs
- The magnitude of drugs effect on HR varies between the drugs, their doses, and their classes
- In clinical R&D (unlike LQTS or SQTS), there is no clear numerical "thresholds" for the safety concern of DI-HR increment, particularly in COPD population
- At present, the link between DI-increase in HR and clinical outcomes in COPD is intuitive and suggestive rather than conclusive

Why Is There a Concern About an Increase in HR in COPD?

COPD population

- Resting HR is already elevated and HR "reserve" diminished
- Impaired ANS balance and adjustment of HR
- Tends to be older with an increased prevalence of:
 - Co-morbidities (often HF and CAD) and abnormal conditions (eg. fever, hypoxemia, hypercapnia)
 - Associated concomitant medications (some QT prolongers)
- Ventricular and supraventricular arrhythmias (PACs, MAT, AF) not uncommon

Drugs for COPD

- Some agents (chiefly SABAs, LABAs) further increase HR yet the Impact of drug-induced HR increase on M/M less investigated
- Tachyarrhythmia is a well-recognized side effect of beta-mimetic and anticholinergic agents
- o DDI becomes important due to polypharmacy

• In general:

- Faster HR may promote systemic inflammation, atherosclerosis, reduces coronary artery reserves, increased mechanical stress to the heart and arterial wall, and aggravate cardiac dysfunctions
- Might be associated with increased mortality
- Although the association of HR and outcome is suggestive, it does not, by itself, prove causality. High HR is often associated with:
 - o Poor cardiorespiratory fitness (powerful predictor of mortality)
 - o HTN, DM, obesity, atherogenic lipid profile
 - Impaired cardiac function

HR and Life Expectancy

There is a strong correlation between HR and life span in homeothermic mammals, including in humans. General rules:

- Lower HR longer life, higher HR shorter life
- o If humans are predetermined to have ~3 billion heart beats/lifetime; reduction in mean HR from 70 to 60 beats/min throughout life would increase life span from 80 to 93.3 years

Heart Rate and Mortality: (BEAUTIFUL1 Trial)

In Healthy Men (n=5,713)

(Age: 42-53; FU: 23 y)

In CAD (n=24,913)

(Both genders, FU: 14.7 y)

Increased HR in COPD: Regulation and Possible Mechanisms

- Regulation of HR (regular and irregular):
 - Intrinsic (determining) cardiac factors:
 - Spontaneous rate of depolarization of pacemaker structures
 - Ventricular response (eg. AV conduction in AF)
 - Extracardiac (modifying) factors:
 - ANS
 - Pre-existing diseases (e.g. CAD, hypertension, thyroid gland dysfunctions) and abnormal conditions (e.g. hypoxemia, hypercapnia, acid-base disturbances)
 - Medications

Possible Mechanisms:

- Direct (side) effect of (inhaled) beta-mimetic and anticholinergic agents on cardiac automaticity
 - B2-adrenoceptor stimulation Increases the slope of the slow diastolic depolarization and maximum diastolic potential
- Indirect: via lung hyperinflation
 - Hyperinflation in COPD may lead to decrease of the ventricular size and function, with decreased stroke volume and cardiac output leading to an increase in HR

Drug-Induced Arrhythmias in COPD: Possible Mechanisms

- Most common: increased supraventricular (and ventricular) ectopic activities
- Drug-induced increase in HR in COPD might further diminish CA reserve in CAD pts, and likely deteriorate contractility and relaxation functions in HF pts resulting in deterioration of electrical stability
- The initiation of beta (2)-agonist treatment increases HR and might reduce
 K⁺ concentrations compared to placebo
- Although COPD patients are prone to cardiac arrhythmias, this seems not necessary to be related to QTc prolongation
 - Beta (2) agonists (in addition to increase HR) accelerate cardiac repolarization, as result – no change in QTc
 - QTc might be increased due to increased HR + concomitant QT-prolonging medications (eg. antibiotics) due to impaired adjustment of QT duration to the increase in HR (eg. LVH)
 - In patients with LQT1 and LQT2 (but not LQT3), beta-adrenergic stimulation might produce QT interval prolongation, induce TdP by increasing transmural dispersion of repolarization

Questions and Dilemmas

- HR: is it about EP, HD or both?
 - How to measure HR?
 - How to assess EP and HD aspects of HR?
- What else can be measured and assessed to characterize drug-induced changes in HR?
- How relevant is of our knowledge about an increase in HR in clinical practice and DI-HR, particularly in COPD patients?
- What could be acceptable (safety) threshold for the changes in HR?

Assessment of Drug-induced HR Changes in R&D: Clinical Aspects

- Drug effect:
 - Primary vs secondary
 - Acute (SABAs) vs chronic (LABAs)
 - At rest vs exercise
 - Oral vs inhaled vs i/v
 - Symptomatic vs asymptomatic
 - Early (SAD, MAD) vs later stages of R&D
- Additional indexes:
 - Rate of change and rate of recovery
 - Maximum HR at (a) (respiratory) exercise performance or (b) ETT
 - Heart rate reserve
 - Compensation/adjustment by BP, body temperature
 - HR ranges:
 - Magnitude of changes (mean HR over period of time)
 - Outliers
 - P waves morphology/polymorphism, ST-T changes, QT/QTc prolongation

Instead of Conclusions

- 1. HR is a simple and accessible clinical variable yet it is a complex index of cardiac safety
- 2. HR is an integral part of vital sign assessment in clinical practice and R&D, and its drug-induced changes should be interpreted in conjunction with other vital signs (BP, temperature)
- 3. HR changes should be evaluated from EP, HD, and clinical outcomes perspectives
- 4. There are no clear evidences that drug-induced HR increase is a clear-cut independent CV risk factor in COPD; the clinical data are suggestive rather than conclusive
- 5. The magnitude of HR increase should be consider as an important variable, particularly in COPD patients with CAD and HF
- 6. There is no acceptable (safety) threshold for the drug-induced changes in HR in COPD. Risk assessment should be done on the case-by-case basis

THANK YOU!