Cardiac Safety Research Consortium (CSRC) BP Thinktank

Measurement Techniques & Methodology – Early Development Session IV

18 July 2012

Jeff Heilbraun, MS CoreLab Partners, Inc.

Agenda

- Technology and methodology considerations
- Overview of technology options early development
- Reference studies

Blood Pressure Monitoring – technology and methodology: Points to Consider

- Blood pressure endpoint
 - Dose response/concentration effect
 - Standard vital sign monitoring
 - General question for study integration: How will this measure help define/identify if a BP signal exists?
- Patient population versus healthy volunteer
 - Is the selected BP technology appropriate for the study population
 - Validation of the device within specific population
 - Participant compliance
- Differentiation between devices developed for clinic environment versus personal/individual use
 - Device calibration

Blood Pressure Monitoring – technology and methodology: Points to Consider

- BP device validation & industry standards
 - Regulatory validation
 - FDA 510(k)
 - CE Mark
 - Industry standards "protocols"
 - AAMI Association of Advancement of Medical Instrumentation
 - BHS British Hypertension Society
 - ESH International protocol
 - Population specific studies
 - Pediatric
 - Obese

Blood Pressure Monitoring – technology and methodology

- Should we be focused on ascultatory vs. algorithm based BP assessment?
 - Clinical culture and behavior change
 - Existing industry and clinical BP data "manual" can we use this data as standard industry data set?
- Variability based on methodology/technology
 - Human factor ascultatory & manometer
 - Algorithm and device validation
- Validation vs. Training/Certification
 - Are devices validated based on sufficient rigor and protocol?
 - Are study sites trained appropriately either for ascultatory or automated device procedures?

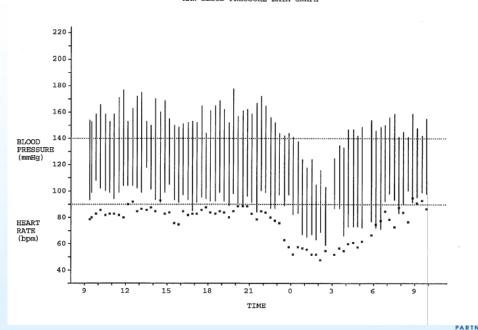
Technology

ABPM

Home/Office BP

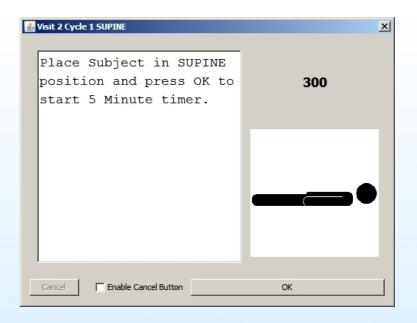
BP Device – Strengths/Limtations and Implementation

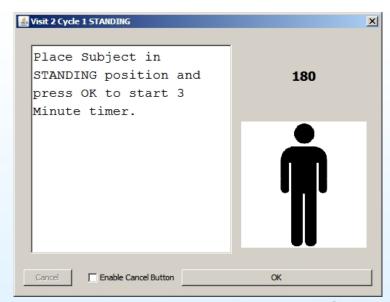
BP methodology - technology	Strength	Limitation	Clinical phase Application	White Coat Effect	Night Time Data	orthostatic evaluation	AASI, CASP - other
Auscultatory Clinic BP measurement using mercury, aneroid devices	Traditional standard used in epidemiological and large trials. Use to calibrate automated oscillometric devices	Mercury environmental concerns Unable to provide sleep reading, associated with white coat effect	Phase I-IV	Y	N	Y	N
Auscultatory Clinic BP measurement using digital manometer	Removes mercury issue, enhanced validation and easier to read BP values, Use to calibrate automated oscillometric devices	Still based on well trained observer to obtain BP readings	Phase I - IV	Y	N	Υ	N
Automated Clinic Oscillometric BP Measurement	Not subject to observer bias, select inflation sequence, may remove white coat effect, a number of devices allow to 'toggle" to a manual mode	accuracy should be checked on each patient	Phase I-IV	N	N	Y	N


BP methodology - technology	Strength	Limitation	Clinical phase Application	White Coat Effect	Night Time Data	orthostatic evaluation	AASI, CASP - other
	Descrides souls						
Automated Clinic Oscillometric BP Measurement - centralized monitoring (C-OBPM)	Provides early visibility into Clinic based BP trends. Removes white coat as well.	Learning curve for sites to implement process	Phase I - III	N	N	Y	N
Ambulatory Blood Pressure Monitoring (ABPM)	Provides large number of readings over a 24 hr period. Only method providing sleep BP High short and long term reproducibility	Tolerability by patients may limit number of days patient will wear device	Phase I-IV	N	Y	Y	Y?
Automated self measured home oscillometric BP measurement	Provides out of office readings, recognized correlation to ABPM data	Requires patient to transcribe BP values into diary, device validation for population	Phase II-IV	N	Y/N	N	N
Automated self measured home oscillometric BP measurement - telemonitoring (T-SMBP)	Ability to transfer and process large amount of data easily, trend analysis and alert criteria	Working with telecommunication providers to move to a data transmission focus	Phase II-IV	N	Y/N	N	N
Hemodynamic BP evaluation - pulse wave form evaluation	provides non-invasive BP associated endpoints such as CASP, arterial compliance	Open debate on best endpoint idential and proprietary of Corel	Phase I- IV .ab Partners, Inc, all rights re	NA served.	NA	CNACOI	<u>eLøb</u>

ABPM – Ambulatory Blood Pressure Monitoring

- Oscillometric devices
- Configurable inflation sequence
- 24 hour BP monitoring
- High number of BP readings over 24 hour period
- Time matched BP readings
- Dose response
 - Comparison to baseline
- Screening tool mean values
 - 24 hr. mean
 - Daytime
 - Nightime




RAW BLOOD PRESSURE DATA GRAPH

Automated Clinic Blood Pressure

- Oscillometric devices
- Configurable inflation sequence
- Time matched BP readings
- Electronic data capture
- Automated averaging

ABPM – cardiac safety endpoint –early development

Protocol	Indication	Objective
A randomized, parallel, double-blind, placebo-controlled, time- lagged, ascending, multiple-dose, pharmacokinetic, pharmacodynamic, safety and tolerability study of XXX in healthy volunteers	Clinical Pharmacology - CNS	Evaluate the safety and tolerability of once daily dose, oral of XXX in healthy volunteers
A randomized, double-blind, placebo-controlled, cross-over study to investigate the effect of YYY on ambulatory blood pressure	Clinical Pharmacology - CNS	Primary endpoint - change in 24 hr. average SBP and DBP from Baseline
A Randomized, Observer-Blind, Placebo-Controlled, Four Treatment Latin Square Study to Evaluate the Safety and Tolerability of Concomitant Administration of XXX and YYY	Clinical Pharmacology - Urology	Evaluate the effects on BP and HR when single doses of XXX and YYY are given in combination to female volunteers
The effect of XXX and YYY in the Treatment of mild to moderate hypertension in Salt-Sensitive Subjects	Phase II / Clinical Pharmacology setting	Compare the effects of XXX and YYY on blood pressure and urinary ANP in subjects with salt-sensitive hypertension
A placebo-controlled, crossover study evaluating the effects of XXX on insulin resistance in subjects with hypertension	Phase II / Clinical Pharmacology setting	To demonstrate that XXX in comparison with placebo will increase the insulin sensitivity index after 4 weeks of therapy in patients with Stage 1 or Stage 2 hypertension and historical evidence of insulin resistance.
A Randomized comparison of XXX and YYY formulations of ZZZ relative to placebo in patients with borderline to mild/moderate hypertension	Phase II / Clinical Pharmacology setting	To compare a sustained release XXX with an immediate release XXX in terms of safety and pharmacokinetics

Case Study: CNS Development

Background

- Compound in early phase, initial identification in increase in BP
- Unclear if the BP increase resolves based upon PK/PD response
- ABPM Primary endpoint
- Goal to identify both immediate BP response to compound as well as response over extended period of time and steady state

ABPM Benefit

Used both as an in patient - time matched PK/PD as well as 24 hour circadian profile

Case Study: CNS Development

- 48 healthy volunteers
- 2 period cross-over design
- ABPM sessions scheduled based upon known steady state and beyond – 3 per period with a baseline at the start of each period
- Analysis of 24 hour mean systolic and diastolic as well as mean day and nighttime

Summary

- Focus on the basics Clinic BP
 - Cuff selection
 - BP assessment environment
 - Device validation
 - Patient population
 - Question use of sites own automated device or standardized automated device provided to the site for a study
 Question Calibration of devices
- Open for discussion:
 - Number of BP readings and averaging
 - Cuff standardization (small, medium, large, X-Large)
 - Is electronic capture of clinic BP an advantage over BP value transcription
 - Where does central BP monitoring fit into cardiac safety (versus efficacy)
- Recognized benefit of ABPM in off-target effect
- Take home message:
 - for BP evaluation look at the continuum across development phases
 - Recognize that the technologies are complimentary and can be implemented within a single study
 - Request input on BP expectations from Cardiorenal team

Reference List

- Terra et. al. Evaluation of Methods for improving Precision of Blood Pressure Measurements in Phase I Clinical Trials J. Clin. Pharmacology 204; 44: 457-463.
- Peixoto, AJ, White, WB Circadian blood pressure: Clinical Implications based on the pathophysiology of its variability. Kidney International 21 March 2007
- Giles, Thomas. Blood Pressure The Better Biomarker: Delay in Clinical Application. Journal of Clinical Hypertension. 2007;9:12:918-920
- Ohkubo, Takayoshi, Imai, Yutaka, Tsuji, Ichiro, Nagai, Kenichi, Ito, Sadayoshi, Satoh, Hiroshi, Hisamichi, Shigeru, Reference Values for 24-Hour Ambulatory Blood Pressure Monitoring Based on a Prognostic Criterion – The Ohasama Study. Hypertension. 1998:; 32:255-259.
- Saad, Ayman, Beto, Robert, Abraham, Jame, Remick, Scot. Cardiovascular Safety and Toxicity Profile of New Molecularly Targeted Anticancer Agents. American Society of Clinical Oncology 2008
- Wan et. al. Determining which automatic digital blood pressure device performs adequately: a systematic review. Journal of Hypertension 2010, 24: 431-438.
- Godwin et. Al. Measuring blood pressure in the office setting: manual and automated office measurements in relation to awake ambulatory blood pressure monitoring. Family Practice; 0: 1-8
- O'Brien et. Al. European Society of Hypertension International protocol revision for the validation of blood pressure measuring devices in adults. Blood Pressure Monitoring 2010; 15: 23-38

Reference List

- Izzo, J Sica, D Black, H: Hypertension primer Fourth Edition 2008, American Heart Association – Council on High Blood Pressure
- Gosse, P Coulon, P Ambulatory or Home Measurement of Blood Pressure Commentary Journal of Clinical Hypertension 2009; 11:234-237
- Verdecchia et. al. Prognostic value of circadian blood pressure variation JASH March/April 2008: vol. 2: issue 2
- Pickering, Should doctors still measure blood pressure? Editorial Journal of Clinical Hypertension Vol. 8 No. 6 June 2006
- Furusawa, E et. al. Home and Ambulatory Blood Pressure Monitoring to identify white coat and masked hypertension in pediatric population, American Journal of Hypertension vol 24 number 8 893-897 August 2011
- O'Brien, E Why ABPM should be mandatory in all trials of blood pressure lowering drugs DIA Journal Vol. 45 233-239 2011
- O'Brien, Dolan Blood pressure variability: Clarity for clinical practice Editorial Hypertension 2010, 56: 179-181
- Parati, G Bilo G, Should 24-h Ambulatory Blood Pressure Monitoring be done in every patient with diabetes? Diabetes Care Vol. 32, Supplement 2, November 2009

Supporting – backup slides

Standard Office Blood Pressure Evaluation

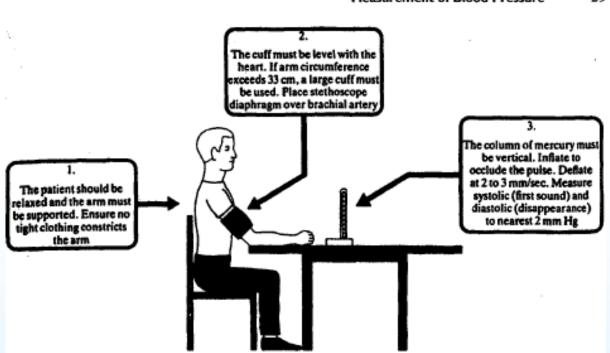


Figure 2.7. Technique of blood pressure measurement recommended by the British Hypertension Society. (Reproduced with permission from British Hypertension Society. J Hypertens 1985;3:293.)

What is working / What can we do better / What is developing

- What is working
- Consistency
- Standardization
- Device validation
- "Organic" focus on BP methodology and endpoint consideration
- Ambulatory Blood Pressure Monitoring
 - Implementation across clinical trial phases and indications
- Education awareness within clinical trial environment

- What can we do better
- Awareness of BP evaluation based on
 - Patient population
 - Device validation
 - When is ascultatory evaluation appropriate?
 - Decision tree of BP methodology based on BP signal
 - Cuff circumf. standardization
 - Determine clinic based protocol
 - triplicate vs. single
 - orthostatic evaluation
 - Number of cycles of BP
- What is developing
 - Remote patient monitoring
 - Combination devices
 - Cross therapeutic awareness it's not just hypertension research
 - Blood pressure variability

Benefits of Automated Office and Home BP

- Additional tool in clinical trial blood pressure evaluation and monitoring
 - Assist in identification of white coat hypertensive patient
 - Remove variability that is generated by human/auscultatory bias
 - Good correlation between ABPM and automated home BP Not a substitute but a compliment to ABP
- Accuracy of data collection remove transcription errors (electronic home BP) Adaptive clinical trial design
 - Allows for earlier identification trends in blood pressure response
 - May allow for earlier endpoint identification

Benefits of ABPM and T-SMBP

- Additional tool in clinical trial blood pressure evaluation and monitoring
 - Remove variability that is generated by human/auscultatory bias
 - Good correlation between ABPM and automated home BP/T-SMBP – Not a substitute but a compliment to ABP
- ABPM large sample around a 24 hour period
- T-SMBP large sample over an extended period of time (months)

